World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Carbon, Oxygen and Biological Productivity in the Southern Ocean in and Out the Kerguelen Plume: Carioca Drifter Results : Volume 12, Issue 11 (09/06/2015)

By Merlivat, L.

Click here to view

Book Id: WPLBN0003983278
Format Type: PDF Article :
File Size: Pages 12
Reproduction Date: 2015

Title: Carbon, Oxygen and Biological Productivity in the Southern Ocean in and Out the Kerguelen Plume: Carioca Drifter Results : Volume 12, Issue 11 (09/06/2015)  
Author: Merlivat, L.
Volume: Vol. 12, Issue 11
Language: English
Subject: Science, Biogeosciences
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

D'ovidio, F., Merlivat, L., & Boutin, J. (2015). Carbon, Oxygen and Biological Productivity in the Southern Ocean in and Out the Kerguelen Plume: Carioca Drifter Results : Volume 12, Issue 11 (09/06/2015). Retrieved from http://worldjournal.org/


Description
Description: Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, 4 place Jussieu, 75005 Paris, France. The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second Kerguelen Ocean and Plateau compared Study expedition (KEOPS2) in austral spring (October–November 2011), one CARbon Interface OCean Atmosphere (CARIOCA) buoy was deployed east of the Kerguelen Plateau. It drifted eastward downstream along the Kerguelen plume. Hourly surface measurements of pCO2, O2 and ancillary observations were collected between 1 November 2011 and 12 February 2012 with the aim of characterizing the spatial and temporal variability of the biological net community production, NCP, downstream the Kerguelen Plateau, assessing the impact of iron-induced productivity on the biological inorganic carbon consumption and consequently on the CO2 flux exchanged at the air–sea interface. The trajectory of the buoy up to mid-December was within the longitude range 72–83° E, close to the polar front and then in the polar frontal zone, PFZ, up to 97° E. From 17 November to 16 December, the buoy drifted within the Kerguelen plume following a filament carrying dissolved iron, DFe, for a total distance of 700 km. In the first part of the trajectory of the buoy, within the iron plume, the ocean surface waters were always a sink for CO2 and a source for O2, with fluxes of respective mean values equal to −8 mmol CO2 and +38 mmol O2 m−2 d−1. To the east, as the buoy escaped the iron-enriched filament, the fluxes were in the opposite direction, with respective mean values of +5 mmol CO2 and −48 mmol O2 m−2 d−1. These numbers clearly indicate the strong impact of biological processes on the biogeochemistry in the surface waters within the Kerguelen plume in November–mid-December, while it is undetectable to the east in the PFZ from mid- December to mid-February. While the buoy follows the Fe-enriched filament, simultaneous observations of dissolved inorganic carbon (DIC) and dissolved oxygen (O2) highlight biological events lasting from 2 to 4 days. Stoichiometric ratios, O2 / C, between 1.1 and 1.4 are observed indicating new and regenerated production regimes. NCP estimates range from 60 to 140 mmol C m−2 d−1.

Summary
Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results

Excerpt
Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B.,Bopp, L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbière, A., Durand, I., Ebersbach, F., Fuda, J.-L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P., Lefèvre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park, Y.-H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L., and Wagener, T.: Effect of natural iron fertilization on carbon sequestration in the Southern Ocean, Nature, 446, 1070–1074, 2007.; Blain, S., Sarthou, G., and Laan, P.: Distribution of dissolved iron during the natural iron fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean), Deep-Sea Res. Pt. II, 55, 594–605, 2008.; Borrione, I. and Schlitzer, R.: Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean, Biogeosciences, 10, 217–231, doi:10.5194/bg-10-217-2013, 2013.; Boutin, J. and Merlivat, L.: New in situ estimates of carbon biological production rates in the Southern Ocean from CARIOCA drifter measurements, Geophys. Res. Lett., 36, L13608, doi:10.1029/2009gl038307, 2009.; Boutin J., Merlivat L., Hénocq C., Martin N., and Sallée, J. B.: Air-sea CO2 flux variability in frontal regions of the Southern Ocean from CARIOCA drifters, Limnol. Oceanogr., 53, 2062–2079, 2008.; Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. J.: Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions, Science, 315, 612–617, 2007.; Cassar, N., Barnett, B. A., Bender, M. L., Hamme, R. C., and Tilbrook, B.: Continuous high frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry, Anal. Chem., 81, 1855–1864, 2009.; Cavagna, A. J., Fripiat, F., Elskens, M., Dehairs, F., Mangion, P., Chirurgien, L., Closset, I., Lasbleiz, M., Flores-Leiva, L., Cardinal, D., Leblanc, K., Fernandez, C., Lefèvre, D., Oriol, L., and Quéguiner, B.: Biological productivity regime and associated N cycling in the surface waters over and downstream the Kerguelen Island area, Southern Ocean, Biogeosciences Discuss., 11, 18073–18104, doi:10.5194/bgd-11-18073-2014, 2014.; Copin-Montegut, C.: Consumption and production on scales of a few days of inorganic carbon, nitrate and oxygen by the planktonic community: results of continuous measurements at the Dyfamed Station in the northwestern Mediterranean Sea (May 1995), Deep-Sea Res. I, 47, 447–477, 2000.; Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.; Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to Best Practices for Ocean CO2 Measurements, PICES Special Publication, 3191 pp., 2007.; d'Ovidio, F., Della Penna, A., Trull, T. W., Nencioli, F., Pujol, I., Rio, M. H., Park, Y.-H., Cotté, C., Zhou, M., and Blain, S.: The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen plateau, Biogeosciences Discuss., 12, 779–814, doi:10.5194/bgd-12-779-2015, 2015.; Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: better fitting equations, Limnol. Ocean

 
 


Copyright © World Library Foundation. All rights reserved. eBooks from World Journals, Database of Academic Research Journals are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.